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In developing the theory of heterogeneous chemical kinetics, the use of ideas and meth-
ods of geometrical probabilities provided the explanation of the universal kinetic regularities
inherent in solid state reactions conjugated with first-order phase transitions. But in the
course of time it is becoming clearer and clearer that the other side of the universality of the
conventional geometric-probabilistic approach in terms of coverings is the set of discrim-
ination issues which find no adequate resolution within this phenomenology. Meanwhile
another mathematical language, the language of tessellations, had been worked out in the
framework of the theory of geometrical probabilities and, later, stochastic geometry. It is
more promising with respect to deeper interpretation and chemical differentiation of models.
The interplay between these two languages is discussed from the angle of essential issues
concerning the mathematical description of solid state reaction kinetics.

The veritable logic of our world is the count of probabilities
J.C. Maxwell

1. Introduction: feedforwards and feedbacks

The accumulation of various issues and controversial results needs, from time to
time, a backward look for getting a keener insight into the present state of events and
sketching a way forward. This is the case now for heterogeneous chemical kinetics,
and this year provides an opportunity to approach in a historical retrospection some
key points of the mathematical description of solid state reaction kinetics: in 1997 it is
just 60 years to the paper [1]. This commonly known paper in the field is written by
the outstanding mathematician, the author of the generally accepted system of axioms
of probability theory, A.N. Kolmogorov. Chronologically, it was the first stone in the
building of the geometric-probabilistic approach to heterogeneous chemical kinetics.
Together with the works [2] and [3], it has played a decisive role in the transition from
deterministic to stochastic description.

The penetration of the ideas and methods of geometrical probabilities into hetero-
geneous chemical kinetics appears to be very fruitful, and the geometric-probabilistic
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approach performs nowadays an important conceptual role. The discussion of its vari-
ous aspects may be found, in particular, in [4–11]. But there is also another important
result, the strong feedback that influenced considerably the progress of the theory of
geometrical probabilities and integral geometry, in particular the evolution of stochastic
geometry into a separate branch [12–19].

Recently, considerable progress was made in a relevant field of stochastic geom-
etry, namely, the theory of random tessellations [20–25], and the obtained results are
promising for breaking the vicious circle of numerous essential issues that have accu-
mulated meanwhile in heterogeneous chemical kinetics.

For the present, these results remain mainly the property of mathematicians.
To attract to them the attention of chemists and to include them into the context of
heterogeneous chemical kinetics is one of the aims of this paper. However, this aim is
not the main one. The new language, the language of tessellations, provides a new look
at the old issues which have found no adequate resolution for quite a long time. This
determines the structure of the paper. In section 3 these issues are discussed using the
usual language, the language of coverings, and an attempt is made to trace them back
to the original works [1–3] and thus to get at their roots. In section 4 these problems
are approached again in terms of tessellations from the angle of new possibilities to
resolve them. Section 2 provides some preliminary information. The chronological
description in no case assumes a historical study, as well as the 60-year anniversary of
the geometric-probabilistic approach is nothing more than an opportunity for a brewed
discussion of the accumulated issues.

The number of references is restricted to a possible minimum on the principle
of an intersection rather than a combination of two sets representing the fields of
heterogeneous kinetics and stochastic geometry. But the majority of the necessary
additional references “in depth” as well as “in breadth” may be found in them. The
use of a new language for overcoming existing problems implies not only changes
in the mathematical formalism but also a different approach to experimental design.
Accordingly, the main points under discussion may be of interest not only for theorists
but also for experimenters, which determines to a certain degree the style of the paper.

2. Some preliminaries

The geometric-probabilistic approach to heterogeneous chemical kinetics has a
purely geometrical precursor, and a number of issues considered below involve no
probabilistic aspects. To make the further discussion a bit subtler, it is expedient to
separate the main issues into a probabilistic part and a non-probabilistic one. The next
section deals with the deterministic geometrical part of the formalism. In this respect,
the word “before” in its title should be understood to have the logical rather than the
chronological meaning.
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2.1. Before geometrical probabilities

The purely geometrical aspects may seem at first glance not only well-known
but also too simple to be discussed again, even in brief. But, nevertheless, they are
considered here, and not only for consistency and completeness. There are at least three
more reasons. (i) To show how volatile this simplicity is and how quickly it disappears
when the geometry of the problem becomes a bit more involved. (ii) To realize the
extent to which the interpretational ability of the models now in use is restricted with
this simple geometry. (iii) To emphasize that, in spite of apparent simplicity, the
unrestricted growth admits another representation, more deep in conceptual respect.

2.1.1. Reaction is localized within the active interfacial zone
Chronologically, this statement was the first influential penetration of geometry

into chemical kinetics. Its simple but convincing “argumentation by contradiction”
belongs to Langmuir [26]: otherwise a solid solution would be formed instead of sep-
arate individual phases. Thereby the local enhancement of reactivity within the active
interfacial zone is implied implicitly. Such localized reactions are termed topochemi-
cal reactions. Contrary to this “logical origin”, the further progress is due mainly to
experimental studies; and nowadays one may notice some gap between the experimen-
tal and theoretical views of the reaction zone. Note in this connection the following
points.

(i) According to the recent (mainly local) experimental results, the reaction zone is
considered at present as a three-dimensional one. Although its width is small, it
is admissible to say that events different in nature may occur at the same time
within its different “layers”. Examples may be found, in particular, in [27,28].

(ii) The experimentally observed front is not necessarily identical to the reaction zone.
Thus, in the case of visual observations an experimenter registers the boundary
between regions with different optical properties which does not necessarily co-
incide with the front of chemical transformations [29].

(iii) The possible anticoincidence of several fronts, as well as the three-dimensionality
of the reaction zone, found no adequate representation in the theory. The reaction
front is considered as a strictly two-dimensional surface separating two three-
dimensional phases. As a rule it is termed reaction front (or boundary) without
any subdivision into the main and accompanying processes.

2.1.2. Reaction starts at the nuclei
The conception of nuclei borrowed from biology had a considerable impact on the

theory of both first-order phase transitions and heterogeneous chemical reactions. This
conception has come to chemistry through physics. An interesting historical review
may be found in [30]. The adaptation of the conception of nuclei for describing
the thermal decomposition of solids is associated by Young [9] with the work [31].
There are examples of the earlier use of the term “nucleus” [32], but before the
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above-mentioned work of Langmuir the use of this conception might hardly have been
efficient. The main ideas and terminology concerning the conception of nuclei are
discussed in detail in [32]. In the present context the following points are worth
mentioning.

(i) The idea that a reaction starts from the formation of stable nuclei immediately
leads us to the picture of the ensemble of growing nuclei, which means that at
beginning stages the reaction zone is multiply connected.

(ii) Subcritical and critical nuclei are small, and it is extremely difficult (if at all
possible) to observe them experimentally. Accordingly, the considerations con-
cerning the mechanism and peculiarities of nucleation are mainly speculative. On
the other hand, the geometric-probabilistic formalism under discussion is adapted
for operating with stable nuclei alone: the intensity of their appearance with time
is described by a function Ln(t) which is termed the nucleation law.

(iii) In the majority of cases, the term “nucleus” (tacitly) means the nucleus of a
product, and it is far from being always recognized that in this case the process
of the demolition of the original phase is not taken into account [33].

2.1.3. Nucleation–growth processes
Gradually the nucleation and growth scheme strengthened itself as a basis for

further development of theoretical views. First of all, it was due to

(i) experimental observations of the figures of growth which agreed with the crystal
chemical structure of samples [34], and

(ii) acceptable coincidence of experimental data and theoretical calculations for early
stages (when the absence of impingements is assumed) and late stages (when the
boundary is assumed to be simply connected) [35]. At the same time, it was
noted that this satisfactory fitting is partly because of mutual compensation of two
simplifying assumptions: the absence of impingements and the constant number
of nuclei.

In this way, the simultaneous proceeding of various conjugated chemical and
physical steps is formalized in terms of geometry as a process of formation and growth
of nuclei, i.e., as the appearance and evolution of the multiply connected reaction zone.
In the framework of the geometric-probabilistic approach, all models are constructed
on this basis, though it is not always recognized and explicitly stated to what extent this
determines the capability and adequacy of these models. Some relevant aspects become
explicit in discussing the interrelation between “internal” and “external” definitions of
the rate.

Whatever involved the process is, it always may be characterized by the quantity
of the rate as a function of time, which provides some integral representation of the
internal peculiarities of this process and their dependence on external conditions. In
our context, this is some experimentally registered quantity (the loss on ignition, heat
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release, etc.) with which the results of theoretical simulations are compared. Sometimes
such a rate definition is termed “external” [36]. In this connection the question arises
which theoretical function of formation and growth of the ensemble of nuclei may
be compared with this quantity. In answering this question some material nuances
concerning the description of the ensemble of growing nuclei become explicit (there
are no difficulties in the case of a separate nucleus).

(i) The form of growing nuclei. Though initially the form of growing nuclei was
naturally compared and correlated with the crystal chemical structure of a sam-
ple [34], the current practice is mostly the default assumption of the spherical
form. It is worth noting that, on the one hand, this poorly agrees with symmetry
considerations and, on the other hand, this is not at all required by the theory.
The only requirement of the theory at this stage is that all nuclei must have the
same form (in passing to the probabilistic part of the problem, this requirement
will become more involved).

(ii) The orientation of all growing nuclei must be the same. Only under this condition
a linear dimension (radius) r may be used for describing the ensemble of these
nuclei. The choice of the radius may be arbitrary (figure 1) but one and the same
for all nuclei. The spherical form is the only case when there is no problem of
orientation, and perhaps this largely elucidates the expressed preference of this
form.

(iii) The growth rate of a separate nucleu ν(t) must not depend on the instant τ of
its appearance. In other words, at any instant t all growing nuclei must have
the same growth rate independently of their “age”. This requirement enables one
to characterize the whole ensemble of growing nuclei with a single quantity of
rate; otherwise this quantity is ambiguous. The use of any particular geometric-
probabilistic model implies that this requirement is satisfied. To what extent this
theoretical requirement is adequate to reality will be discussed below.

Figure 1. The radius of a nucleus may be chosen arbitrarily.
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A more detailed treatment of these and some other related points may be found
in [4].

Within the above framework the evolution of the ensemble of separate nuclei is
described in the following way. The total rate w(t) of the growth process is assumed to
be directly proportional to the total measure M (t) of the interface (interface length in
the two-dimensional case or interface area in the three-dimensional case). The radius
of a separate nucleus appeared at instant τ may be calculated as r(τ , t) =

∫ t
τ ν(ξ) dξ,

where t is the current time and ξ is the integration variable. The corresponding interface
measure µ(τ , t) = crd−1, where c is the form factor (equal to 2π for circles) and d is
the dimensionality of a nucleus (either 2 or 3). Until the ensemble of separate nucleus
is concerned (i.e., there is no impingements), M (t) =

∫ t
0 Ln(ξ)µ(ξ, t) dξ and the total

rate is

w(t) = k

∫ t

0
Ln(ξ)crd−1(ξ, t) dξ, (1)

where k is the proportionality factor. Thus, the main variables have purely geometrical
meaning, leaving for chemistry only the factor k.

2.2. Nucleus impingements: the need for and two ways of probabilistic approach

To take the impingements of growing nuclei into consideration is the most in-
volved and non-trivial part of the problem. In reality the first impingements occur at
fairly small t, and to calculate the rate correctly one needs to know the actual total
length of the boundary with the account of impingements.

Two sources of randomness are connected with the impingements of growing
nuclei:

(i) Nuclei appear at random instants of time.

(ii) New nuclei are situated in a random manner with respect to old nuclei.

This is just the point at which we face the need to resort to the ideas and methods of
probability theory.

If we restrict ourselves to the planar case and allow nuclei to grow up to the
end, we will get a picture similar to that shown in figure 2. A picture like this
one will be seen, for example, if peering into a metallographic lapping. Informally,
the problem is to find appropriate regularities in this involved picture. From the
standpoint of contemporary mathematics, there are two essentially different possibil-
ities to approach this problem. In two subsequent sections they will be discussed
with respect to the issues of heterogeneous kinetics. Conventionally they may be
named as the approach in terms of coverings and the approach in terms of tessel-
lations.

Chronologically, the approach in terms of coverings was the first one that de-
termined to a considerable extent the phenomenology of heterogeneous kinetics, the
main trends of its development, and the present-day situation (section 3). This con-
ventional geometric-probabilistic description has been used in heterogeneous kinetics
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Figure 2. An example of the random tessellation: a nucleation and growth process is completed.

for 60 years. During this period stochastic geometry has developed another language,
the language of tessellations. Only relatively recently the development of this lan-
guage has reached the level sufficient for discussing essential issues of heterogeneous
kinetics. This line is traced in section 4.

The first solution in terms of coverings to the problem of nucleus impingements
was given by Kolmogorov [1] soon after he had presented his system of axioms of
probability theory [37]. A bit later and completely independently the work of Johnson
and Mehl [2] appeared, which, in its turn, inspired the series of works of Avrami [3].
These works gave birth to the geometric-probabilistic approach to heterogeneous chem-
ical kinetics. Though the final equations obtained in these works are similar, they differ
essentially in methods and rigour. In historical retrospection [4], the very first work [1]
appears to be the most rigorous one in mathematical respect. In the work [2] an elegant
“fictitious mechanism” is suggested which is more visual and due to this it provides the
possibility to discern some essential nuances. In [3] the combinatorial aspects of the
problem are considered in detail, but a number of compromises as to the mathematical
rigour were admitted.

In the available literature on heterogeneous kinetics, the discussion of theoreti-
cal aspects is practically never based directly on the work [1]. Besides the obvious
language barrier, this is likely because it is purely mathematical in style and concise
presentation of the material. But when it comes to the questions concerning the es-
sential issues accumulated in heterogeneous kinetics (the discussion of which may be
found, in particular, in [5–8,38–42]), it is the work [1] and the further development of
the method [4] that provide a deeper understanding of their roots, as well as possible
ways out.
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3. Conventional geometric-probabilistic approach to heterogeneous chemical
kinetics

3.1. Note concerning dimensionality

The independence of the main results from the particular dimensionality of the
reaction space is characteristic and essential in the present context peculiarity of the
discussed geometric-probabilistic approach [1,4]. This makes it possible to restrict our
considerations to the two-dimensional case only. In a later section we will see that this
is done not only for the reasons of simplicity and visuality: in the case of chemical
reactions in which a solid reagent participates, the two-dimensional approach has much
deeper substantiations.

3.2. The parent dependent variable

The structure of the theory, its capability and restrictions are determined to a
considerable extent by the particular manner in which the concept of the rate of a
chemical reaction is formalized as a function of time. For heterogeneous reactions
this problem is considerably more involved than for homogeneous reactions. One
of the reasons is that chemical changes are always conjugated with first-order phase
transitions.

In the framework of the geometric-probabilistic approach, the degree of con-
version α(t) serves as the parent dependent variable. It is defined as a (geometrical)
probability of the event that an arbitrary point A of the initial phase will be “consumed”
at instant t by the phase of a product.

On the plane the picture is as follows. Let the area of the initial surface be S0.
Figure 3 shows the picture at some moment t when a part S(t) of the plane has under-
gone a transformation. One throws by chance a point on this plane. The probability
α(t) = S(t)/S0 that it will fit one of the hatched regions is identified with the degree
of conversion.

In homogeneous kinetics there is a quantity that plays a similar role and it is
termed also as the degree of conversion (see, for example, [43]). It must not escape
one’s attention that in spite of the same terminology and designation these quantities
are considerably different. The “homogeneous degree of conversion” is expressed
through the number of moles of a reagent and thus it has a chemical meaning. The
“heterogeneous degree of conversion” is expressed through the area (or volume) and
has no direct connection with chemistry. The fact that in both cases one deals with the
dimensionless variable α(t) varying between 0 and 1 must not mask these conceptual
distinctions. To emphasize them, note that in the case of a non-stoichiometric homo-
geneous reaction a separate degree of conversion may be defined for each component,
which is not the case for a non-stoichiometric heterogeneous reaction. There exists an
even more fundamental distinction: the “homogeneous degree of conversion” is con-
nected with another quantity, the extent of reaction (introduced by De Donder [44]),
which is the property of a system [43]. The “heterogeneous degree of conversion”
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Figure 3. In contrary to figure 2, a nucleation and growth process is not yet completed.

provides an ambiguous description of a system in the sense that the same magnitude
may be realized in a variety of ways (various sets of nuclei) [11].

We are interested in the rate of a reaction. It is determined as the derivative of
the “heterogeneous degree of conversion” with respect to time. And this determines
to some extent the structure and the interpretational ability of the approach under
discussion.

3.3. The main scheme

As was rightly noted in [4], the main contribution of the work [1] to the theory
is not so much the final relationships as the precise formulation of the method and
conditions under which the results rigorously follows.

Our aim is to follow in what way the degree of conversion α(t) defined in terms
of geometrical probabilities may be connected with the ideas of formation, growth and
impingements of nuclei and calculated in terms of two quantities termed nucleation
law Ln(t) (see section 2.1.2) and growth law Lg(τ , t) = c(

∫ t
τ ν(ξ) dξ)d.

Consider a point A chosen by chance within the original phase (figure 4(a)). The
sufficient condition for being consumed at instant t by a new phase is the appearance
at some earlier instant τ < t of a nucleus at such a distance r from A that in the course
of growth this nucleus will be able to reach the point A at the instant t or before. For
brevity such a nucleus will be termed “aggressor” (following the terminology accepted
in [4]). For the given values of t and τ , the value of r is determined by the growth
rate in the given direction. The form of nucleus shown in figure 4(a) is chosen to
emphasize that generally it may be arbitrary; the only requirement for the nucleus
form is convexity. A centrally symmetric figure is termed “imaginary nucleus” [4];
figure 4(b) shows four concentric imaginary nuclei with point A as their center.

The appearance of an aggressor at any point of the boundary of the imaginary
nucleus with the center in the point A and radius r (figure 4(b)) will obviously result
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(a)

(b)

Figure 4. Will the point A be consumed at the instant t by a growing nucleus or not? The answer is in
the text.

in the consumption of the point A by the new phase up to instant t. The point A may
also be consumed by an aggressor that appeared inside this imaginary nucleus at some
earlier instant τ , the distance from A being determined by the value of τ . Note that
the appearance of an aggressor in one of these points is a sufficient but not a necessary
condition for the point A to be consumed. For this reason the calculation of α(t) is
based on the inverse statement: if up to instant τ there will be no aggressors within
imaginary nucleus (including the boundary) with corresponding radius r (figure 4(b)),
the point A will not be consumed by the new phase up to instant t. This enables one to
pass to the system of independent events, the probabilities of which may be multiplied.
The time interval [0, t] is subdivided into N equal parts. Accordingly, space around
the point A is subdivided into the enclosed concentric negative nucleus (figure 4(b)).
The nucleation is assumed to proceed according to a Poisson process. This means
that the probability of the appearance of one nucleus within the region with the area
S(τ , t) = Lg(τ , t) = c(

∫ t
τ ν(ξ) dξ)2 is equal to pi = Ln(τi)Lg(τi, t)∆τ + o(∆τ ), whereas

the probability of the appearance of more than one nucleus is o(∆τ ). The probability
that no nuclei will appear is qi = 1 − pi. The probability Q(t) that a point A will
not be consumed by the new phase up to instant t is calculated as the product of the
probabilities qi corresponding to the subsequently widening regions in figure 4:

Q(t) =
N∏
i=1

qi(τ ). (2)
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Further calculation steps are as follows. By taking the logarithm, one passes
from the product to the sum

lnQ(t) =
N∑
i=1

ln qi (3)

and, after expanding it into a series and substituting the expression for qi’s, one gets

lnQ(t) = −
N∑
i=1

Ln(τi)Lg(τi, t)∆τ + o(1). (4)

Letting N →∞, one gets

lnQ(t) = −
∫ t

0
Ln(τ )Lg(τ , t) dτ. (5)

The sought-for probability that a point A will be consumed by the new phase up to
instant t is

α(t) ≡ 1−Q(t) = 1− exp

(
−
∫ t

0
Ln(τ )Lg(τ , t) dτ

)
, (6)

which is the central relationship connecting α(t) with the idea of growing nuclei.
It was emphasized above that the ideas and methods of geometrical probabilities

are employed for taking the impingements of growing nuclei into account, which is the
most difficult part of the problem. But from the above considerations, the particular
way in which this can be done is not obvious. Some details, important in the present
context, become explicit in terms of the visual approach of Johnson and Mehl [2].

The expression for the rate may be obtained by differentiating (6) with respect
to t. Taking into account that Lg(t, t) = 0 and [Lg(τ , t)]′t = 2cν(t)

∫ t
τ ν(ξ) dξ, one gets

α̇(t) = ν(t)2c
∫ t

0

[
Ln(τ )

∫ t

τ
ν(ξ) dξ

]
dτ

× exp

(
−
∫ t

0
Ln(τ )Lg(τ , t) dτ

)
. (7)

Note that in this particular case, d = 2, the second factor in (7) coincides (within the
proportionality factor) with (1). In terms of unrestricted growth, this is the total length
of the interface. In terms of the approach of Johnson and Mehl, this is the extended
length lext of the interface calculated under the assumption that all nuclei are growing
“ignoring each other” (figure 5). The third factor in (7) is equal to 1− α(t) which is
the probability for an arbitrary point to fit the original phase. With this account, the
expression for the rate may be rewritten in the form

α̇(t) = ν(t)lext(t)
(
1− α(t)

)
. (8)

This provides an idea about the essence of the Johnson–Mehl approach: first
the extended length of the interface is calculated, which presents no difficulties, and
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Figure 5. Illustration to the “fictitious mechanism” of Johnson and Mehl.

then the regions of overlapping (unhatched in figure 5) are taken into account through
multiplying lext by 1− α(t). Thus, it may be said that the approach under discussion
makes it possible to “avoid” the detailed treatment of impingements. It is due to
this fact that the rigorous final solution is obtained in a relatively simple and elegant
manner: each step of the calculations described above guarantees the unoccupied space
for new nuclei to appear. This is a great advantage from the viewpoint of the final
result. On the other hand, this poses some restrictions on the interpretational ability
of the scheme. We will return to this point below.

3.4. The main applicability conditions and particular cases

Relationship (6) is the rigorous solution of the problem only if four applicability
conditions are satisfied. They were clearly stated in [1] and analyzed in detail in [4].

(i) The original parent phase must be unlimited; in other words, a growing nucleus
must be small in comparison with the total reaction space.

(ii) The nucleation must proceed according to a Poisson process. (The possibility to
extend this condition through taking into account the dependence of the probability
of nucleation on the distance from the reaction front is discussed in [4].)

(iii) The form and orientation of all nuclei must be the same, and the nuclei must be
convex (comparing this with section 2, we see that the requirement of convexity
is added, i.e., it concerns the probabilistic aspects of the problem).

(iv) The growth rate of a nucleus must not depend on its “age”; i.e., it must be one
and the same for all nuclei.

If the convexity requirement or condition (iv) is violated, then

α(t) 6 1− exp

(∫ t

0
Ln(τ )Lg(τ , t) dτ

)
. (9)

The use of a particular geometric-probabilistic model without discussing the above
conditions, which is not infrequently the case in the current literature, introduces an
additional ambiguity into the interpretation of results.
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Whereas conditions (i) and (ii) usually raise no objections, the two other condi-
tions seem at first glance to be in poor agreement with reality. Perhaps for this reason,
condition (iii) is often “avoided” through the default acceptance of the spherical form
of nuclei.

In connection with condition (iv), the incompatibility of the geometric-
probabilistic description with the diffusive control of a process must be emphasized.
Under diffusive control, the radius of a separate nucleus, r(τ , t) ∼

√
t− τ , and hence

the growth rate, depends on the age of a nucleus. This is in direct contradiction with
condition (iv). The impossibility to relax this condition was rigorously shown in [4].
This means that geometric-probabilistic models may be used only if the kinetic regime
is proved or supposed. Nevertheless, they are not infrequently used for describing
processes controlled by diffusion. It is worth noting that in these cases one deals
with a formal approximation rather than with meaningful simulation, i.e., no definite
meaning may be assigned to model parameters.

In the present context, the emphasis on the applicability conditions is of particular
interest. The possibility to satisfy them rigorously in a natural way through taking the
crystal chemical structure of a solid reagent into considerations will be discussed below.

The nucleation law Ln(t) and the growth law Lg(τ , t) are initial hypotheses,
the substantiation of which is beyond the phenomenological geometric-probabilistic
approach. Among others, the following two particular cases are most frequently used
in heterogeneous kinetics.

(i) The constant intensity of nucleation Ln = γ and the constant growth rate ν. In
this case,

α(1) = 1− exp
(
−cγνdtd+1/(d+ 1)

)
. (10)

(ii) The instantaneous nucleation at the very beginning of a process with the density
β nuclei per unit surface; ν = const. In this case,

α(t) = 1− exp
(
−cβνdtd

)
. (11)

3.5. Homogeneous chemical interpretation of the main scheme

Talking about the rate of a chemical reaction, we consciously or subconsciously
keep in mind the rate equations for unimolecular and bimolecular reactions as a ref-
erence examples of the most simple and well-studied cases in chemical kinetics. The
conventional way to derive them is to write down the mass action law and to integrate
the corresponding expression (see, for example, [45]).

It was emphasized by Erofeev [46] that the same equations may be obtained
without integrating the mass action law. In formal respect, his approach repeats “word
to word” the above scheme (section 3.3). Let qi in equation (2) have the meaning of
the probability of an elementary event that a molecule of a particular reagent chosen
at random will not react within the ith subinterval of the time interval 0 = t0 < t1 <
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· · · < ti−1 < ti < · · · < tn = t. Then the above calculation steps will lead to the
equation

α∗(t) = 1− exp

(
−
∫ t

0
p(ξ) dξ

)
, (12)

in which p = 1 − q. Putting p = k, where k is constant, one immediately arrives at
the commonly-known equation of a unimolecular reaction

α∗(t) = 1− e−kt. (13)

It must be emphasized again that in these equations we deal with the “homogeneous
degree of conversion” expressible through the number of moles of a component (which
is shown by asterisk). Putting p = (k/ν)(b − αa), where a and b are the initial
concentrations of the reagents A and B, respectively, and V is the volume, one arrives
at the relationship

α∗A(t) = 1− exp

(
ln

a− b
a− b exp(k/V )(b− a)t

)
, (14)

which is equivalent to the conventional equation for a bimolecular reaction [46]. But
in passing to the kinetics of solid-phase reactions, that was the central subject of
paper [46], Erofeev assigned to p a geometric-probabilistic rather than a chemical
interpretation and arrived at the equation similar in essence (and form) to the equations
of Kolmogorov, Johnson–Mehl, and Avrami. Along with spherical nuclei, he also
considered cylindrical and plane nuclei.

3.6. The main trends of development

Pure mathematics deals only with what may be done by rigorous means, whereas
applied mathematics deals with what is necessarily done by available means [47]. Not
infrequently, the many-year development of one or another theory is the attempts to
put these both extremes together. In heterogeneous chemical kinetics, this tendency is
fairly expressed and far from being completed.

The work [1] belongs for sure to the realm of pure mathematics: this is the
rigorous work with clear statement of the applicability conditions for the results ob-
tained. But with respect to reality, represented by polydisperse polycrystalline systems
consisting of poorly characterized (by prehistory instead of composition and structure)
samples, the developed scheme may seem at first glance fairly “lean” with the applica-
bility conditions being unreal. Accordingly, immediately after the problem of nucleus
impingements had been solved, attempts followed to describe “what is necessary”.
Gradually they were split into two directions, the extension of the general scheme and
the modification of particular models.

The main step in developing the general scheme is the attempt to solve the
problem for spherical particles with the subsequent transition to polydisperse systems.
The random nucleation at the surface of a spherical particle was considered practically
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simultaneously in the works of Mampel [48] and Todes and Bogutskiy [49], though
the two approaches differ in some essential details. In [48], the spherical particle is
subdivided into concentric shells, and the appearance, growth and impingements of
nuclei are considered first for the outer shell only. The appearance of a nucleus within
one or another internal shell is determined by the time required for a nucleus appearing
at the outer shell to reach this internal shell. Finally, the degree of conversion α(t)
is calculated through integrating over all spherical shells. The problem is thus solved
“shell-by-shell”. The result is as follows:

α(t) =
3

4πR3

∫ ∆2

∆1

4π(R − Z)2

×
{

1− exp

[
− R

R− Z

(
k1N0k

2
2πt

3/3− k1N0πZ
2 +

2
3
πZ3k1N0/k2

)]}
dZ

+
3

4πR3

∫ ∆4

∆3

4π(R − Z)2

×
{

1− exp

[
−4k1N0πR

2t+
4k1N0

3k2
πR
(
4R2 − 2RZ + Z2)]} dZ. (15)

Here R is the radius of the external shell, Z is the distance of an internal shell from the
external surface, N0 is the average number of nuclei per unit square, k1 is the nucleation
constant, k2 is the growth constant, and the integration limits are as follows: for 0 6
t 6 R/k2, ∆1 = 0, ∆2 = k2t, ∆3 = 0, ∆4 = 0; for R/k2 6 t 6 2R/k2, ∆1 = 0, ∆2 =
2R−k2t, ∆3 = 2R−k2t, ∆4 = R; for 2R/k2 6 t, ∆1 = 0, ∆2 = 0, ∆3 = 0, ∆4 = R.

Todes and Bogutskiy [49] considered simultaneous nucleations of two types:
random formation of nuclei and activation of randomly situated potential nuclei. For
the point A chosen at random inside the spherical particle, the probability is calculated
that at time t this point will be consumed by the new phase. The result is identified
with the degree of conversion

α(t) =
1
R2

∫ R

R−νt

[
1− exp

{
−πR

r

[
N0
(
ν2t2 − (R− Z)2)

+
a

3

(
ν2t3 − 3(R− r)2 + 2

(R − r)3

ν

)]}]
r2 dr. (16)

Here N0 is the average density of potential nuclei and a is the probability of nucleation
per unit surface per unit time, r is the polar radius.

These results for a single spherical particle are the first step on the way from
“what is possible” to “what is necessary”. And even this first step has led to the in-
volved integrals which cannot be expressed in the closed form. The more so, attempts
to estimate the influence of the particle size on the kinetics of a transformation and
to pass to the analysis of polydisperse systems [50] faced the considerable computa-
tional difficulties that led to simplifications, the acceptability of which is not simple
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to substantiate. The situation is aggravated because of the difficulties connected with
the direct experimental check of the obtained results [9]. Note also that though in
both papers chemical reactions are mentioned along with first-order phase transitions,
no distinction between them is drawn. The original particles are considered to be
homogeneous and isotropic; the form of nuclei is spherical.

Much later the elaborated analysis has shown that even in the most simple planar
case of the layer-by-layer growth, with all the four applicability conditions given above
being satisfied, the problem has no rigorous solution in closed form [4].

The sharp increase of difficulties in modifying the general scheme, on the one
hand, and unsatisfactory description of experimental data by rigorously derived par-
ticular equations (10), (11), on the other hand, resulted in attempts to modify these
particular equations proceeding from various empirical considerations. Thus, it was
suggested in [51] to use the equation

α(t) = 1− e−kt
ν−ktν+1

(17)

instead of equation (11), i.e., to add one more term to the exponent (in contrast to
d in equation (11), ν is a formal adjustment parameter). This was motivated by
the need to describe the bend of the experimental straight line in the logarithmic
scale. Modification of another type consists in the change of factor 1− α(t) to factor
(1 − α(t))µ, where µ is one more formal parameter; µ > 1 [52]. As a result, instead
of equation (11) one gets the (totally dissimilar) equation(

1− α(t)
)µ

=
1

1 + ktν
. (18)

The next step in this direction was done in [53], where the following equation with
formal parameters λ, µ and ν was suggested:

α̇(t) = kα(t)λ
(
1− α(t)

)µ[− ln
(
1− α(t)

)]ν
. (19)

This equation is a generalized one in the sense that many of the particular equations
now in use may be obtained from it under definite values of parameters. However, it
must be stressed in this connection that any choice of µ 6= 1 negates the fundamental
assumption of the equiprobability of nucleus formation discussed above [11].

In all mentioned works, the spherical form of both nuclei and original particles
was explicitly or implicitly assumed. Along with this, from the very beginning there
were attempts to enrich the set of models in other ways, through considering different
forms of nuclei (e.g., [54]) and also different forms of original particles (e.g., [55]).
In the latter case three possibilities for a reaction to start were considered, on the
faces, edges or vertices of a particle. These elements may enter a reaction either
simultaneously or according to the law of chance. But in these ways the difficulties
appeared to be even much greater, and nowadays the majority of works deal with the
spherical form.

The above considerations provide an idea about the ways in which the set of
geometric-probabilistic models now in use in heterogeneous chemical kinetics was
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formed. The discussion of various relevant aspects may be found in modern treatises,
reviews and papers [4–11,27–29,38–42,56–60].

3.7. The main problems; the role of the geometric-probabilistic approach

The above main trends of development have resulted in two extremes with practi-
cally no “golden mean”. On the one hand, we have too complicated models like (15),
(16); the other extreme is the set of oversimplified models such as (10), (11) and
(17)–(19). Whereas the former models have found practically no utilization, the latter
ones have been widely employed for describing and analyzing experimental results.
In the course of long intensive practice of using these models, various discrimination
problems arose that gradually formed a fairly stable circle. During the last two decades
they were discussed from various angles [5–8,38–41,58–60]. The following problems
belong to the most representative ones.

(i) Statistical indistinguishability of models: one and the same set of experimental
data may be described equally well by several different models [61].

(ii) Quite different original concepts concerning the reaction mechanism may lead to
the same equation in terms of α. For example, the well-known equation

ln
(
α(t)/

(
1− α(t)

))
= kt (20)

may be obtained by assuming [62] the mechanism of autocatalytic reactions, the
chain mechanism of “outstripping” self-dispersion, the radical-chain mechanism,
and the diffusion mechanism. A number of other similar examples may be found
in [62].

(iii) When considered in totality from one or another common viewpoint, models may
acquire an interpretation different from the original one which is accompanied by
a considerable reduction of the variation of their conceptual meaning. In terms of
functional analysis, this was shown in [59,60]. Twenty particular models widely
used in heterogeneous kinetics were selected for analysis. This set was considered
as a space, and the scalar product was introduced in the usual way for its vectors.
Thus, the emphasis was placed on the form rather than on the meaning of models:
the bigger the angle between two models the greater distinctions between them.
The analysis of this space provides four classes of kinetic models, characterized by
similar properties; some models being intermediate between these classes. One of
the conclusions made by the authors is that some models different in mathematical
form give practically very close values of the kinetic parameters, i.e., they actually
characterize very similar processes, but describe them in a different mathematical
form. In terms of geometrical probabilities, various models are compared in [11].

Among other discrimination issues, the problem of fractional values of expo-
nents in particular models deserves special attention. During recent years this fairly
old problem has taken new interesting aspects. This is due to the wide penetration of
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the theory of fractals [63,64] into heterogeneous chemistry [65]. In this connection it
is worth emphasizing that within the conventional geometric-probabilistic approach an
integer dimensionality of the reaction environment is implied. Accordingly, numerous
cases of fractional values of this parameter obtained from experimental data have al-
ways been a considerable problem of interpretation. At first glance, fractals suggest
themselves in this situation as a direct way out. However, the following points should
be taken into account. (i) It is not a simple task to reconcile the notion of fractal with
the convexity requirement. The possibility to relax this requirement in the framework
of discrete description has been shown in [66]. But within the conventional contin-
uous description this requirement cannot be relaxed [4]. (ii) In many cases fractals
appear as a result of diffusion-control processes. Recall in this connection that the
geometric-probabilistic approach is not adapted for taking these processes into account
(see section 3.4). (iii) In computational respect, fractional exponents may well result
from violation of the above applicability conditions. No doubt, the fractal approach to
heterogeneous chemistry is interesting and promising. But the question of whether a
fractional exponent of a particular geometric-probabilistic model indicates the forma-
tion of a fractal remains open for the present and requires further development of the
geometric-probabilistic approach with respect to chemical interpretation.

The discrimination problems give rise to the question to what extent they are
specified by particular models and to what extent they are inherent to the general
geometric-probabilistic scheme. In [11] it was shown that the geometric-probabilistic
scheme is essentially ambiguous with respect to inverse kinetic problems. In this con-
nection it is worth emphasizing again the geometric-probabilistic interpretation of the
main variables. The consequence of this is that all conceptual details of the mechanism
which do not fall within this interpretation are represented on the stage of formaliza-
tion by the model coefficients only. As a result, they participate in the discrimination
procedure not through the form of the function but only through the numerical values
of the coefficients. Note also that a single phase transition and, therefore, the complete
coherence of all processes are implied by conventional equations now in use, which
is not the case for the majority of reactions.

We saw that, along with the geometric-probabilistic interpretation, the formal
scheme admits also a chemical interpretation. But in the framework of the conventional
continuous approach, EITHER a chemical OR a geometric-probabilistic meaning may
be assigned to the probabilities qi in (2). Perhaps this is the main reason why there
was no progress in developing the theory in the direction of chemical interpretation
and differentiation of models, and such an important characteristic of the chemical
individuality of a solid reagent as its crystal chemical structure was not represented in
the theory at all. Accordingly, symmetry considerations appear to be inapplicable.

The ambiguous interrelationship between kinetic behaviour and mechanism is, of
course, the problem not only of heterogeneous kinetics. This is the general problem
of chemical kinetics [5,6,36,67]. When fairly involved reactions are concerned, it is
impossible to elucidate the mechanism proceeding from the mathematical treatment
of the observed kinetic behaviour only. In the case of a more developed theory (in
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the contiguous fields such as heterogeneous catalysis), kinetic analysis is accomplished
with various additional measurements and considerations [36]. That is why the question
whether or not the chemical interpretation of the geometric-probabilistic scheme is
possible is so important: one may hope to resolve the above problems only in the way
of overcoming the “chemical facelessness” of the conventional approach [40,58].

All what was said about the problems and difficulties must not disparage the
important conceptual role of the geometric-probabilistic approach for contemporary
heterogeneous chemical kinetics. Whereas phase transitions may occur without chem-
ical transformations, any solid state chemical reaction is always conjugated with the
disappearance and formation of phases that proceed through the formation, growth and
impingements of nuclei. This point cannot be avoided, and the rigorous solution of the
direct problem in terms of the geometric-probabilistic approach provides the reliable
ground for further development of the theory.

In thinking about the ways of adequate chemical interpretations of the geometric-
probabilistic scheme and the possibility to describe correctly “what is necessary”,
new mathematical tools naturally attract attention of those who are dealing with the
theoretical problems of heterogeneous kinetics. Some of them are due to the recent
development of the theory of random tessellations.

4. Nucleation–growth-impingement processes in terms of tessellations

The works [1] and [2], classical in heterogeneous chemical kinetics, are also cited
in the literature on stochastic geometry among the origins of one of its important parts,
the theory of random tessellations. On the background of unsatisfactory dynamics in
resolving the above discrimination issues, especially during recent years, this affinity
naturally attracts one’s attention as a potential possibility to approach them from a
new angle. There are comprehensive treatises and reviews on stochastic geometry
among which references [12–20,72–75] seem to be most appropriate to the subject of
this paper. The aim of the subsequent section is to follow briefly the evolution of the
theory of random tessellations emphasizing interconnections and parallels essential in
the present context.

4.1. Random tessellations: from geometrical probabilities to stochastic geometry

The problem of nucleus impingements was rigorously solved in [1] in terms of
geometrical probabilities, and practically at the same time attempts to make more pre-
cise the statements and methods of the theory of geometrical probabilities itself gave
rise to the appearance of a new mathematical discipline, integral geometry [68], in the
framework of which stochastic geometry has later been crystallized [12–14]. From
the viewpoint of stochastic geometry, figure 2 shows a random tessellation. Various
problems connected with disparate by nature random tessellations are typical prob-
lems of stochastic geometry [16–18]. It is also worth emphasizing that the study of
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random tessellations, in particular Voronoi tessellations and Johnson–Mehl tessella-
tions, contributed considerably to the formation of stochastic geometry as a separate
branch [12].

Along with the work [2], the works [69–71] should be mentioned as the original
works dealing with random tessellations. In these works the first results have been
obtained and the main trends and issues have become explicit. Later a considerable
progress was reached in the series of works of Miles (summarized, in particular, in
his review [72] where other references may be found). The two-dimensional case was
considered separately, which is essential in the present context (see section 3.1). As
was noted by Santalò [12], these works of Miles have played an important role in
the formation of stochastic geometry by introducing ideas and methods of the theory
of random processes into integral geometry. The term “stochastic geometry” was
suggested in 1969 by Kendall, Krickeberg, and Miles at a Symposium on Integral
Geometry (Germany) [12]. The review of Miles on random tessellations [72] appeared
even later, in 1972. Note that at this time the conventional geometric-probabilistic
approach to heterogeneous chemical kinetics had been used for quite a long period
of time, had found the representation in the main treatises [6,7,9], and also gave rise
to some of the issues which make one to resort today to the ideas and methods of
stochastic geometry.

Initially integral geometry dealt with finite sets of geometrical elements and with
measures spaces of these sets. The transition to countably infinite sets provides the
possibility of using the methods of the theory of random point processes [71]. The
systematic use of the theory of random sets inspired, in particular, a considerable
progress in the statistics of geometrical objects [74]. In its turn, results of stochastic
geometry gave positive impact to the theory of random point processes, which is noted
in [75]. In the preface of the book [12], this dynamics of events is characterized as
the renaissance of the interest in this beautiful bewitching brunch of mathematics.
This development is promising, in particular, for heterogeneous chemical kinetics, and
random tessellations form in this respect a “conceptual cross-road”.

4.2. Voronoi tessellations and Johnson–Mehl tessellations

During the recent 10–15 years, a general theory of random tessellations has been
established in the framework of stochastic geometry [20–23]. The growth models have
found their place in stochastic geometry along with intersection models (connected with
random line processes and plane processes) and fracture models [17,18] and, together
with them, such terms as “birth–growth processes”, “nuclei”, “crystals”, etc., have
entered stochastic geometry. The characteristic feature of the theory is that the majority
of models are developed based on Poisson processes, since non-Poisson models in
general seem to be analytically intractable [22]. Though a number of important results
are obtained for arbitrary dimensions, we will be interested, as before, in the two-
dimensional case only.
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A planar random tessellation is characterized by its typical element, and a pos-
sibility to approach the above issues of heterogeneous kinetics from a new angle is
connected with the use of this notion. The typical element is characterized by its area,
perimeter length, typical edge length, number of edges, etc. [12–14]. Note that each
cell of a random tessellation has six neighbors on average; in other words, the typical
element has six edges. The purely topological character of this fact (interesting and
essential in the present context) was proved in [76] before the work [2] had appeared.

A Voronoi tessellation appears as a special case where all nuclei are born at
the same instant. But even in this relatively simple case the closed expressions of
distribution functions or densities are unknown for the majority of random variables.
Concerning the second-order moments, the variances and covariances of the cell area,
edge length, perimeter length, and number of vertices have been calculated, but gener-
ally results of this kind are very complicated to evaluate [21]. The main characteristics
of a typical element are as follows [14] (λ is the intensity of a Poisson point process):
the average number N of edges of a typical element is 6; the average area S is 1/λ;
the average perimeter length P is 4/λ1/2; the average length L of a typical edge is
2/3λ1/2; the average number N ′ of edges outgoing from a typical vertex is 3; the
average total length L′ of edges outgoing from a typical vertex is 2/λ1/2.

In examining the Johnson–Mehl tessellations, the role of numerical simulation
increases considerably. In [22] the algorithm for simulating spatially and temporally
inhomogeneous Poisson processes and the general procedure for generating a typical
crystal are given. For the particular case of the Johnson–Mehl tessellations in two
dimensions, 10000 independent realizations have been obtained for estimating the
area, perimeter length, number of vertices, number of full neighbors, and minimal and
maximal angles of the typical vertex. Also, histograms for the empirical distributions
of these quantities are given. The main characteristics of the typical element are as
follows [22]: the average number N of edges and vertices is 6; the average area S
is λ−1; the average length L of a typical edge is 2µ1/λ (where µ1 is the density of
1-interfaces); intensities Id of d-interfaces (where d is the dimensionality) are λ for
d = 2 and 3λ for d = 1.

In the background of the deficiency of closed expressions for the majority of dis-
tribution functions, the well-known distribution of the distances of the nearest neighbors
in the Voronoi case [15],

fj(r) = 2(λπ)j
(
(j − 1)!

)−1
exp
{
−λπr2

j

}
r2j−1
j , (21)

where j is the subsequent number of a neighbor, provides an interesting possibility to
progress in describing and analyzing solid state reaction kinetics in the way of explicit
account of nuclei impingements.

4.3. The explicit account of nuclei impingements

Upon acquaintance with the literature on random tessellations, one of the first
(and, perhaps, the most indisputable) conclusion is that in describing solid state reaction
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kinetics no simplifications of the formalism may be expected. It is understandable
from the very beginning that essential computational problems cannot be avoided.
The interest in the possibility to pass from the description in terms of coverings to
the description in terms of tessellations is, thus, due to essential conceptual novelties,
some of which are discussed below.

4.3.1. Deterministic growth versus stochastic nucleation and impingements
It follows from section 2 that the description of the unrestricted growth of both

separate nuclei and ensemble of nuclei is purely deterministic. The requirements of
the same form, same orientation and independence of the growth rate from the nucleus
age are of this origin. In solving the problem of nucleus impingements in terms
of coverings, this deterministic part is incorporated into the stochastic one in such
a way that the former is practically “dissolved” in the latter, which is illustrated by
the “fictitious mechanism” of Johnson and Mehl (section 3.3). This interconnection
between deterministic and stochastic parts of the problem ensures a relative simplicity
in obtaining the final result. But the price for this simplicity is the loss of some
informative details.

In this respect, an alternative case is the simulation of the process as the growth of
a single nucleus inside the typical cell of the corresponding random tessellation [11,77]
(figure 6). This provides the possibility to separate the deterministic description of
unrestricted growth from the stochastic description of nucleation and nucleus impinge-
ments and to take into consideration some geometrical details of impingements which
are simulated in these terms as the impingements of the single nucleus with the edges of
the typical cell. This change of the problem structure touches a number of conceptual
points, in particular the choice of the parent dependent variable.

Figure 6. The nuclei impingements may be simulated as the impingements of separate nuclei with the
boundary of a typical hexagon.
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4.3.2. The parent dependent variable
In terms of coverings, the parent dependent variable α(t) has actually the meaning

of area (see section 3.2), and the stochastic description of reaction kinetics is based on
its interpretation as a probability. For random planar tessellations, the closed expression
for the distribution function or density of area is unknown even for the relatively simple
Voronoi case [20,21]. However, the exact density function is known for the distances
to nearest neighbors (cf. (21)). As was noted above, this is one of the few available
closed expressions relevant in the present context. From this viewpoint, and also
keeping in mind the aim to give an adequate “internal definition” for the rate, it is
appropriate to deal directly with the efficient boundary length. In terms of tessellations
it may be estimated as a fraction of the perimeter length of a growing nucleus which
falls within the interior of a typical cell [11]. (It is easy to see that for unrestricted
growth, i.e., before the first impingement, this will be the total perimeter length.) In
this way the role of two main variables, the degree of conversion α(t) and the rate
w(t), is exchanged: the latter becomes the parent dependent variable.

4.3.3. A second note concerning dimensionality
The conventional geometric-probabilistic approach is invariant with respect to

the dimensionality [1,4]; the same is the case for the majority of results for random
tessellations [21,22]. The main reasons of favoring the two-dimensional approach to
describe solid state reaction kinetics are determined by conceptual rather than formal
considerations [33,58]. Among them the symmetry considerations should be put at the
first place: in terms of the crystal chemical structure of a sample normal and tangential
directions are not equivalent with respect to the reaction front advance. Symmetry
considerations cannot be referred directly to a disperse polycrystalline sample which
naturally leads to the need of dealing with single crystals [40]. This is in line with the
modern trends in experimental research [27–29,39,78]. Quite a number of examples
may be provided that one and the same reaction may proceed on different faces of
the same crystal under the same conditions in different manners, performing disparate
localization forms as well as kinetic behaviour [29]. The adequate tool to this is the
representation of a single crystal as a set of crystallographic planes [79]. This provides
the possibility to describe a bulk process “layer-by-layer”, the events within each layer
being considered separately (figure 7) [33].

In a formal respect, however, there are also some important nuances. The above
closed expression for the density function (21) is one of them. Another one is con-
nected with the correct understanding of the statement that conventional geometric-
probabilistic approach is independent of the dimensionality. This independence means
that this formalism is equally applicable to describe the appearance, growth and im-
pingements of nuclei both at a surface and within a volume, provided that the applica-
bility conditions are satisfied. But if nuclei are formed at a surface alone and then a
process proceeds into the bulk, the second applicability condition will be violated and,
accordingly, the simple three-dimensional description will no longer be rigorous [11].
In the next section one more sound formal argument will be mentioned in the con-
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Figure 7. Genesis of the rate–time curve. A single crystal is represented as a set of crystallographic
planes (a). For each plane, three tessellations are constructed: planigon tessellation (b), Wigner–Seitz
tessellation (c), and random tessellation (d). In terms of the superposition of these Dirichlet tessellations,

the appearance of singular points on the w(s) curve may be followed step-by-step (e).

text of the interconnection of the geometry of the crystal space of a sample with the
dynamics of the reaction front advance. It touches, in particular, the essential point
concerning the chemical variable in the structure of the theory.

4.3.4. The chemical interpretation of the parent variable
In the structure of the conventional continuous formalism there is no chemical

variable, i.e., such a variable which is capable of characterizing directly chemical
changes in the system. It is implied that chemistry is represented by the coefficients of
the models only. But one may notice that these coefficients multiply variables which
are geometric-probabilistic in meaning and, in addition, usually include several fac-
tors of different nature. This “chemical facelessness” is one of the main roots of the
discrimination issues which considerably aggravate the ambiguity of the inverse ki-
netic problem [11,33]. This rises the question whether an additional chemical variable
should be introduced into the theory or, alternatively, a way to assign the chemical in-
terpretation to the existing variable should be thought over (which means to interrelate
the geometric-probabilistic and chemical degrees of conversion). In a formal respect,
this is a question about the agreement of measures: for interpreting the existing vari-
able some external extensional measure needs to be associated with the single-barrier
elementary act [41].

In the framework of the essentially two-dimensional approach referred to a sin-
gle crystal face, this may be done in terms of planigons [80]. A planigon is a convex
planar polygon such that congruent planigons form a regular tessellation of the plane.
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Any movement (symmetry operation) transforming one planigon into another trans-
forms the whole tessellation into itself. Each planigon tessellation corresponds to one
of the 17 two-dimensional Fedorov groups. The complete theory of planigons has
been developed in the series of works of Delone and co-authors [81] and of Grünbaum
and Shephard [82]. (The conclusive works are referred to here in which the pre-
ceding references may be found.) With the complete symmetry being represented in
terms of planigons, it is natural to characterize the translational symmetry in terms
of Wigner–Seitz cells [83] and to associate in this way the advance of the reaction
front with the translational symmetry [80]. This approach is based on the fact that
three relevant tessellations may be constructed for a single crystal face: planigon tes-
sellation (figure 7(b)), Wigner–Seitz tessellation (figure 7(c)), and random tessellation
(figure 7(d)). Note that from a formal viewpoint all the above three tessellations are
Dirichlet tessellations (see [81], [83] and [20], respectively).

In describing the reaction front advance in terms of the superposition of Dirichlet
tessellations, we face one more advantageous peculiarity of the two-dimensional ap-
proach: in two dimensions there is the possibility to use the notion of adjacency. (In
three dimensions there is no such possibility, and there exists no complete analog of
the planigon theory [84].) The use of the notion of adjacency enables one to associate
the dynamics of the reaction front advance with the geometry of the crystal space of a
sample: at each step s a reaction is propagated with equal probability from converted
regions to all translationally equivalent adjacent regions. In essence, this means the
transition to a discrete description; the step s playing the role of the discrete time [80]:

ν(s) = kνη(s− 1), (22)

where η is the number of planigons comprised by a Wigner–Seitz cell and ν is the
number of edges of this cell.

Each planigon is a “rightful domain” of its center of action, i.e., the particular
atom of one or another chemical nature. This domain has definite form and dimensions
which are unambiguously determined by the parameters of a crystal lattice. The
corresponding tables may be found in [81]. Due to this, the change of the boundary
length in passing from the step s to the step s + 1 may be expressed in terms of
the usual geometrical measure with which, however, a definite number of atoms of a
definite sort is associated. In this way the routine possibility to calculate geometrical
probabilities as the ratio of measures is preserved and at the same time the parent
variable acquires a chemical interpretation.

4.3.5. Restricted growth: genesis of the sigmoid α–t curve
Discrimination issues may be approached from the viewpoint of the statement of

the inverse kinetic problem in the broadest sense as the interrelation between kinetic
behaviour and mechanism. Whatever the chemical nature of a solid state reaction
is, the corresponding α(t) curve practically always has the sigmoid form [9]. This
contradiction between the wide variety of chemical reactions, on the one hand, and
one and the same fairly simple form of the kinetic curve, on the other hand, determines
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an important requirement for the formalism: to “discern” the chemical variety through
the universal geometrical regularities that are responsible for the sigmoid form of the
α(t) curve. It is impossible to do this in terms of coverings because the genesis of the
curve with time cannot be followed step-by-step. The approach in terms of tessellations
seems to be a more promising one in this respect due to the capability of taking the
geometrical details of impingements into account.

The deterministic description of unrestricted growth in terms of planigons has
one essential advantage from the standpoint of the stochastic aspects under discussion:
the applicability conditions (section 3.4) are satisfied automatically. All nuclei have the
same form corresponding to the crystal chemical structure of a crystal face; all of them
are oriented in the same manner since Wigner–Seitz cells have the same orientation; the
growth rate is independent of the nucleus “age” (cf. (22)). As a result, the applicability
conditions look no longer as something artificial and incompatible with reality.

In these terms, the nucleus impingements are simulated as the impingements of
a single growing nucleus with the edges and vertices of the typical cell of a random
tessellation. The unrestricted nucleus growth (before the first impingement) is linear
(cf. (22)). After the first impingement, the nucleus growth is restricted with one
straight line. It was shown in [85] that in this case linearity is preserved but the
slope is changed. As a result, a singular point appears on the w(s) and α(s) curves.
Similarly, each subsequent impingement of a growing nucleus with an edge or a vertex
of the typical cell results in a new singular point. This enables one to follow the way
in which the w(s) curve is formed (figure 7(e)). Corresponding to this is the sigmoid
α(s) curve.

The Voronoi case is simpler since a nucleus is growing within the typical cell
invariable with time. In the general Johnson–Mehl case, the typical cell is tightened
all the time due to the appearance of new nuclei. In both cases, as many as 11 singular
points may be pointed out on the w(s) curve corresponding to the impingements with
6 edges and 5 vertices of the typical cell. When the 6th, most distant, vertex is reached
a process is completed and the rate is vanished.

This geometrical picture may be described in the general case by 12 difference
equations corresponding to 12 line segments of w(s) curve. For the reasons discussed
in [85], it is convenient to write them in terms of us = (w(s),w(s + 1)) for each line
segment:

u(j)
σ = Aσu(j)

0 , (23)

where the consecutive number j of a line segment varies from 1 to 12 and

A =

[
0 1
−1 2

]
. (24)

The step number σ is counted off the point next to the corresponding singular point
s(j−1)
d : σ = s(j)

d − s
(j−1)
d + 1, i.e., σ = 0 for the first point of each line segment. The

value j = 1 corresponds to unrestricted growth. In this case, d(1) in u(j)
0 is equal to

the number of planigon edges, and w(1)(0) = 0.
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This description of the kinetic curve in terms of the superposition of Dirichlet
tessellations of three types (planigon tessellations, Wigner–Seitz tessellations, and ran-
dom tessellations) makes it possible to represent the rate of a solid-phase chemical
reaction as a measure of the random marked-point process. This “internal definition”
of the rate enables one to take the chemical individuality of a solid reagent into account
and thus to make a step from the approximation which is formal in chemical respect
towards meaningful simulations [40,73,86].

5. Conclusions: the interplay between the languages of coverings and
tessellations

Every “rationally thinking person” understands that coincidences of dates and
events mean nothing in the majority of cases. But, nevertheless, in facing such coin-
cidences a doubt is inherent to the nature of a human being whether this is actually no
more than a simple occasion. And sometimes unwitting ratiocinations on this subject
make essential logical interconnections and parallels explicit.

Chronologically, the very first solution to the problem of nuclei impingements
was given in 1937 [1]. And now it is clear that this solution is the most rigorous
in mathematical respect. Practically simultaneously, the first book [68] on integral
geometry appeared. And in the same year, 1937, it was proved in a purely topological
manner that an average typical cell of a plane random tessellation has 6 edges [76].
Treating critically, as is appropriate to a “rationally thinking person”, the occasional
coincidence of dates and events, the present author failed to escape the involuntary ra-
tiocinations concerning the fact that these three events, completely independent at that
time, have interlaced later in the context of heterogeneous chemical kinetics in con-
nection with attempts to resolve the accumulated discrimination issues. This inspired
to a degree the above considerations that lead to the following conclusions.

(1) Starting from the works [1,2], two lines may be followed: (i) the development
of the geometric-probabilistic approach to first-order phase transitions and het-
erogeneous chemical kinetics, and (ii) the development of the theory of random
tessellations in the framework of the theory of geometrical probabilities and, later,
stochastic geometry.

(2) The conventional geometric-probabilistic formalism has played one of the key roles
in the formation of contemporary heterogeneous chemical kinetics and remains one
of the main theoretical grounds of this branch of science. This is determined by
a number of reasons, the main one of which is that solid state reactions are al-
ways conjugated with first-order phase transitions, and the geometric-probabilistic
approach is capable of providing the rigorous solution to the relevant direct prob-
lem. The absence of the expressed positive dynamics in resolving the accumulated
issues connected with the inverse kinetic problem makes one think in essentially
new ways. But however radical the changes may be, they will necessarily remain
within the framework of the ideas of nucleation and growth.
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(3) In parallel with the development and employment of the conventional geometric-
probabilistic approach in heterogeneous kinetics, the theory of geometrical proba-
bilities itself has undergone important changes. The reconsideration of its grounds
had led to the appearance of integral geometry. Later, the combination of ideas
and methods of integral geometry with those of the theory of random processes
gave birth to stochastic geometry. The theory of random tessellations, which has
one of its roots in the work [2], has contributed considerably to the emergence of
stochastic geometry and nowadays it is actively developed in the framework of
this branch of mathematics.

(4) The results obtained in the theory of random tessellations, especially during the re-
cent 10–15 years, are promising from the standpoint of the discrimination issues of
heterogeneous kinetics. The restatement of the “nucleation–growth-impingement”
problem in terms of tessellations makes it possible to follow the genesis of the
sigmoid α–t curve. In this framework, the description of the unrestricted growth
in terms of planigons and Wigner–Seitz cells ensures the fulfillment of the main
applicability conditions and enables one to attach a chemical meaning to the par-
ent dependent variable preserving at the same time its properties of a geometrical
measure. The latter is important with respect to overcoming the “chemical face-
lessness” of the existing formalism.

(5) The two approaches, in terms of coverings and in terms of tessellations, are mutu-
ally complement rather than they exclude each other. At first steps, the use of the
ideas and methods of geometrical probabilities made it possible to describe gen-
eral universal features of solid state reactions avoiding the consideration of their
particular features. The further progress is connected with the chemical differenti-
ation on the basis of a keener insight into the mechanism. For this the language of
tessellations seems to be more adapted. In this connection, the work [86] attracts
attention as a bridge between the two approaches. It is devoted to limit theorems
for the time of completion of Johnson–Mehl tessellations and, according to the
words of its author, is “a continuation of the pioneering work [1]”. In solving
the problems of heterogeneous chemical kinetics, the potential of the geometric-
probabilistic approach is far from been exhausted, and a strong development may
be expected in the way of using the language of coverings as a “limit language”
with respect to the language of tessellations.
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